
Chapter 4

Creating an Android App
In This Chapter
▶ Creating an elementary Android app
▶ Troubleshooting troublesome apps
▶ Testing an app on an emulator or a mobile device
▶ Dissecting an app

C
hapter 3 describes the writing and running of a dirt-simple Java program.
Like many Java programs, the one in Chapter 3 runs on a plain-old

desktop or laptop computer. Behind the scenes, the code in Chapter 3 uses
the powerful features of standard Oracle Java. But the two kinds of Java
(standard Oracle Java for desktops and laptops, and Android’s Java for
mobile devices) are slightly different animals, for these reasons:

 ✓ Standard Java uses the power and speed of desktop and laptop
computers.

 Android Java is streamlined to run on smaller devices with less memory.

 ✓ Standard Java uses some features that aren’t available in Android Java.

 For example, the javax.swing.JOptionPane.showMessageDialog
call in the program in Chapter 3 isn’t available in Android Java.

 ✓ Android Java uses some features that aren’t available in standard Java.

 For example, the Activity class in this chapter’s program isn’t
available in standard Java.

 ✓ Creating a basic Android app requires more steps than creating a
basic standard Java app.

This chapter covers the steps that are required in order to create a basic
Android app, though the app doesn’t do much. (In fact, you might argue that
it does nothing.) But the example shows you how to create and run a new
Android project.

78 Part I: Getting Started with Java Programming for Android Developers

Creating Your First Android App
A gadget typically comes supplied with a manual. The manual’s first sentence
is “Read all 37 safety warnings before attempting to install this product.”
Don’t you love it? You can’t get to the pertinent material without wading
through the preliminaries.

Well, nothing in this chapter can set your house on fire or even break your
electronic device. But before you follow this chapter’s instructions, you need
a bunch of software on your development computer. To make sure you have
this software, and that it’s properly configured, see Chapter 2. (Do not pass
Go; do not collect $200.)

When at last you have all the software you need, you’re ready to start Eclipse
and create a real, live Android app.

Creating an Android project
To create your first Android application, follow these steps:

 1. Launch Eclipse.

 For details on launching Eclipse, see Chapter 2.

 2. From the main menu in Eclipse, choose File➪New➪Android
Application Project.

 As a result, Eclipse fires up its New Android Application dialog box, as
shown in Figure 4-1.

 3. In the Application Name field, type a name for the app.

 In Figure 4-1, I type the boring words My First Android App.
Ordinary folks such as Joe and Jane User, however, will see this name
under the app’s icon on the Android launcher screen. If you’re planning
to market your app, make the name short, sweet, and descriptive. You
can even include blank spaces in the name.

 The next several steps involve lots of clicking, but you primarily accept
the default settings.

 4. (Optional) In the Project Name and Package Name fields, change the
name of the project and the name of the Java package containing the
project.

 Eclipse automatically fills in the Project Name and Package Name fields
(guided by whatever text you type in the Application Name field). In

79 Chapter 4: Creating an Android App

Figure 4-1, Eclipse creates the project name MyFirstAndroidApp and
the package name com.example.myfirstandroidapp. Eclipse uses
the project name to label this app’s branch in the Package Explorer tree.

Figure 4-1:
The first

New
Android

Application
dialog box.

 For practice apps, you can cheat by using the package name that Eclipse
creates. But if you plan to publish an app, give the app its own package
name, using the rules described in Chapter 3.

 In Android, a package name belongs to only one app. You can put the
first app in the package org.allyourcode.firstapp and put the
second app in the package org.allyourcode.secondapp. But you
can’t put more than one app in an org.allyourcode.mystuff
package.

 For the lowdown on Java packages and package names, see Chapter 5.

 5. (Optional) Choose values from the drop-down boxes in the dialog box.

 To find out what you’re promising when you select Minimum Required
SDK API 8 and Target SDK API 16, see the nearby sidebar, “Using
Android versions.”

 In Figure 4-1, I accept the defaults offered to me — API 8, API 16, and
API 17. You can select any values from the drop-down boxes as long as
you’ve created an Android Virtual Device (AVD) that can run the target’s
projects. (For example, an Android 2.3.3 AVD can run projects targeted
to earlier versions of Android, such as Android 2.3.1, Android 2.2, and
Android 1.6. The project target doesn’t have to be an exact match with
an existing AVD.)

80 Part I: Getting Started with Java Programming for Android Developers

Using Android versions
Android has a few different uses for version
numbers. For example, in Figure 4-1, the
minimum required SDK is API 8 and the target
SDK is API 16. What’s the difference?

You design an Android app to run on a range
of API versions. You can think informally of the
minimum SDK version as the lowest version in
the range, and the target version as the highest.
So if you select API 8 as the minimum SDK and
select API 16 as the target, you design an app
to run on API levels 8 through 16.

But the lowest-to-highest-version idea needs
refining. The official Android documentation
reports that “ . . . new versions of the platform
are fully backward-compatible.” So an app that
runs correctly on API 8 should run correctly on
all versions higher than API 8. (I write “should
run correctly” because, in practice, full
backward compatibility is difficult to achieve.
Anyway, if the Android team is willing to
promise full backward compatibility, I’m willing
to take my chances.)

The target version (it’s API 16 in Figure 4-1) is
the version for which you test the app. When
you run this chapter’s example, Eclipse opens
an emulator with API 16 or higher installed. (For
example, if you’ve created an AVD whose API is
level 17 but you have no AVD whose API is level
16, Eclipse opens the emulator with API 17.) To
the extent that your app passes your testing,

the app runs correctly on devices that run API
16 (also known as Android 4.1). What about
devices that run other versions of Android? This
list provides an explanation:

 ✓ The app’s target version is API 16, but the
app uses only features that are available
in API 8 and earlier: In that case, you can
safely enter the number 8 in the Minimum
Required SDK field in Eclipse.

 ✓ The app uses some features available only
in API 16 and later, but the app contains
workarounds for devices that run API 8:
(The app’s code can detect a device’s
Android version and contains alternative
code for different versions.) In that case,
you can safely put the number 8 in the
Minimum Required SDK field.

 ✓ The app’s target version is API 16: In 2019,
someone installs your app on a device
running API 99 (code-named Zucchini
Bread). Because of backward compatibility,
the app runs awkwardly but correctly on
the API 99 device. Then the app’s target
version (API 16) isn’t truly the upper limit.

When you select a target version and a minimum
SDK version, Android stores these numbers in
the project’s AndroidManifest.xml file.
You can see the AndroidManifest.xml
file in the project’s tree in the Package Explorer
in Eclipse.

 If you mistakenly select a target for which you have no AVD, Eclipse
hollers at you when you try to run the project. (Though Eclipse hollers,
it also offers to help you create the necessary AVD, so everything turns
out just fine.)

81 Chapter 4: Creating an Android App

 For help with creating an AVD, see Chapter 2.

 6. Click Next.

 As a result, the New Android Application dialog box reappears. (See
Figure 4-2 — okay, originality in naming dialog boxes may not be
Eclipse’s strong suit.)

Figure 4-2:
The

second New
Android

Application
dialog box.

 7. (Optional) Tweak the settings in the latest incarnation of the New
Android Application dialog box.

 For a practice app, I recommend deselecting the Create Custom
Launcher Icon check box and leaving untouched the other settings in
this New Android Application dialog box. In particular, keep the Create
Activity option selected.

 8. Click Next.

 As a result, the Create Activity dialog box appears, as shown in Figure 4-3.

 For the truth about activities in Android, see Chapter 5.

 9. Click Next again. (In other words, accept the defaults in the Create
Activity dialog box.)

 The next box in the sequence is the New Blank Activity dialog box, as
shown in Figure 4-4.

82 Part I: Getting Started with Java Programming for Android Developers

Figure 4-3:
Creating a

new activity.

Figure 4-4:
Creating a

blank
activity.

 10. Click Finish. (That is, accept the defaults.)

 As a result, the New Blank Activity dialog box closes, and the Eclipse
workbench moves to the foreground. The Package Explorer tree in
Eclipse has a new branch. The branch’s label is the name of the new
project, as shown in Figure 4-5.

83 Chapter 4: Creating an Android App

Figure 4-5:
A new

MyFirst
Android

App
branch.

 Congratulations — you’ve created an Android application.

Running your project
To kick your new app’s tires and take your app around the block, do the
following:

 1. Select the app’s branch in the Package Explorer in Eclipse.

 (Refer to Figure 4-5.)

 2. In the main menu, choose Run➪Run As➪Android Application.

 As a result, the Console view displays several lines of text. Among them,
you might find the phrases Launching a new emulator, Waiting
for HOME, and (as shown in Figure 4-6) my personal favorite, Success!

84 Part I: Getting Started with Java Programming for Android Developers

Figure 4-6:
The Console

view
during the

successful
launch of

an app.

 If you don’t see the Console view, you have to coax it out of hiding. For
details, see Chapter 3.

 In the lingo of general app development, a console is a text-only window
that displays the output of a running program. A console might also
accept commands from the user (in this case, the app developer).
A single Android run might create several consoles at a time, so the
Console view in Eclipse can display several consoles at a time. If the
material you see in the Console view in Eclipse is nothing like the text
shown in Figure 4-6, the Console view may be displaying the wrong
console. To fix this problem, look for a button showing a picture of a
computer terminal in the upper-right corner of the Console view, as
shown in Figure 4-7. Click the arrow to the right of the button. In the
resulting drop-down list, choose Android.

Figure 4-7:
Choosing a

console.

 3. Wait for the Android emulator to display the Device Locked screen, a
Home screen, or an app’s screen.

 First you see the word ANDROID as though it’s part of a scene from The
Matrix, as shown in Figure 4-8. Then you see the word ANDROID in

85 Chapter 4: Creating an Android App

shimmering, silvery letters, as shown in Figure 4-9. Finally, you see the
Device Locked screen, a Home screen, or an app’s screen, as shown in
Figure 4-10.

Figure 4-8:
The

emulator
starts

running.

Figure 4-9:
Android

starts
running

on the
emulator.

 4. I can’t overemphasize this point: Wait for the Android emulator to
display the Device Locked screen, a Home screen, or an app’s screen.

 The Android emulator takes a long time to start. For example, on my 2
GHz processor with 4GB of RAM, the emulator takes a few minutes to
mimic a fully booted Android device. You need lots of patience when
you deal with the emulator.

 5. Keep waiting.

 While you’re waiting, you can search the web for the phrase Android
emulator speed up. Lots of people have posted advice, workarounds, and
other hints.

86 Part I: Getting Started with Java Programming for Android Developers

Figure 4-10:
The Device

Locked
screen in

Android 2.3.3
appears.

 Oh! I see that the emulator is finally displaying the Device Locked
screen. It’s time to proceed. . . .

 6. If the emulator displays the Device Locked screen, do whatever you
normally do to unlock an Android device.

 Usually, you unlock the device by sliding something from one part of the
screen to another.

 7. See the app on the emulator’s screen.

 Figure 4-11 shows the running of the Hello World app in Android. (The
screen even displays Hello World!) Eclipse creates this tiny app
when you create a new Android project.

 The Hello World app in Android has no widgets for the user to push, and
the app doesn’t do anything interesting. But the appearance of an app
on the Android screen is a good start. Following the steps in this chapter,
you can start creating many exciting apps.

 Don’t close an Android emulator unless you know that you won’t be using
it for a while. The emulator is fairly reliable after it gets going. (It’s sluggish,
but reliable.) While the emulator runs, you can modify the Android code and
choose Run➪Run As➪Android Application again. When you do, Android
reinstalls the app on the running emulator. The process isn’t speedy, but you
don’t have to wait for the emulator to start. (Actually, if you run a different
app — an app whose minimum required SDK is higher than the running emula-
tor can handle — Android fires up a second emulator. But in many developer
scenarios, jumping between emulators is the exception rather than the rule.)

87 Chapter 4: Creating an Android App

Figure 4-11:
The Hello

World app
in action.

What if . . .
You try to run your first Android app. If your effort stalls, don’t despair. This
section has some troubleshooting tips.

Error message: R cannot be resolved
Every Android app has an R.java file. The Android development tools
generate this file automatically, so normally you don’t have to worry about
R.java. Occasionally, the file takes longer than average to be generated. In
this case, Eclipse finds references to the R class in the rest of the project’s
code and complains that the project has no R class. My advice is to wait.

If one minute of waiting doesn’t bring good results, follow these steps to
double-check the project settings:

 1. Highlight the project in the Package Explorer in Eclipse.

 2. From the main menu, choose Project.

 A list of submenu items appears.

 3. Look for a check mark next to the Build Automatically menu subitem.

88 Part I: Getting Started with Java Programming for Android Developers

 4. If you don’t see a check mark, select the Build Automatically subitem
to add one.

 With any luck, the R.java file appears almost immediately.

If the project is set to Build Automatically and you still don’t have an R.java
file, try these steps:

 1. Highlight the project in the Package Explorer.

 2. From the main menu, choose Project.

 A list of submenu items appears.

 3. In the Clean dialog box in Eclipse, select the project that’s giving you
trouble along with the Clean Projects Selected Below radio button.

 4. Click OK.

Cleaning the project should fix the problem. But if the problem persists, close
Eclipse and then restart it. (Eclipse occasionally becomes “confused” and has
to be restarted.)

 After copying Java code from one Android project to another, you might
see the annoying message Import cannot be resolved near the top of the
program. If so, you might have inadvertently told one project to fetch material
from another project’s R.java file. If the offending line of code is import
somethingOrOther.R, try deleting that line of code. Who knows? Your
deletion might just fix the problem.

Error message: No compatible targets were found
When you see this message, it probably means that you haven’t created
an Android Virtual Device (AVD) capable of running your project. If
Eclipse offers to help you create a new AVD, accept it. Otherwise, choose
Window➪Android Virtual Device Manager to create a new AVD.

 For information about Android Virtual Devices, see Chapter 2.

The emulator stalls during start-up
After five minutes or so, you don’t see the Device Locked screen or the
Android Home screen. Try these solutions:

 ✓ Close the emulator and launch the application again. (Or lather, rinse,
repeat.)

 Sometimes, the second or third time’s a charm. On rare occasions, my
first three attempts fail but my fourth attempt succeeds.

89 Chapter 4: Creating an Android App

 ✓ Start the emulator independently.

 That is, start the emulator without trying to run an Android project.
Follow these four steps:

 a. From the Eclipse main menu, choose Window➪Android Virtual
Device Manager.

 The Android Virtual Device Manager window opens. It contains a
list of AVDs that you’ve already created.

 For help creating an AVD, see Chapter 2.

 b. In the Android Virtual Device Manager, select the AVD that you
want to start.

 c. On the right side of the Android Virtual Device Manager, click
Start.

 As a result, Eclipse displays the Launch Options dialog box.

 d. In the Launch Options dialog box, click Launch.

 In other words, accept the default options and fire up the emulator.

 When, at last, you see the new emulator’s Device Locked screen or
Home screen, follow Steps 1, 2, 6, and 7 in the earlier section “Running
your project.”

 If you try the tricks in this section but the stubborn Android emulator
still doesn’t start, visit this book’s website (http://allmycode.com/
Java4Android) for more strategies to try.

 ✓ Run the app on a phone, a tablet, or another real Android device.

 Testing a brand-new app on a real device makes me queasy. But the
Android sandbox is fairly safe for apps to play in. Besides, apps load
quickly and easily on phones and tablets.

 For instructions on installing apps to Android devices, see the section
“Testing Apps on a Real Device,” later in this chapter.

Error message: The user data image is used by another emulator
If you see this message, a tangle involving the emulator prevents Android
from doing its job. First try closing and restarting the emulator.

If a simple restart doesn’t work, try these steps:

 1. Close the emulator.

 2. From the main menu in Eclipse, choose Window➪Android Virtual
Device Manager.

 To read about the Android Virtual Device Manager, see Chapter 2.

http://allmycode.com/Java4Android
http://allmycode.com/Java4Android

90 Part I: Getting Started with Java Programming for Android Developers

 3. In the list of virtual devices, select an AVD that’s appropriate to the
project and click Start.

 4. In the resulting Launch Options dialog box, select the Wipe User Data
check box and click Launch.

 As a result, Eclipse launches a new copy of the emulator — this time,
with a clean slate.

 If you follow the steps in this section but you still see the message User
data image is used by another emulator, visit this book’s
website (http://allmycode.com/Java4Android) for more help with
this problem.

Error message: Unknown virtual device name
Android looks for AVDs in the home directory’s .android/avd subdirectory,
and occasionally the search goes awry. For example, one of my Windows
computers lists my home directory on an i drive. My AVDs are in i:\
Users\barry\.android\avd. But Android ignores the computer’s home
directory advice and instead looks in c:\Users\Barry. When Android
doesn’t find any AVDs, it complains.

You can devise fancy solutions to this problem by using either junctions or
symbolic links. But solutions of this kind require special handling of their
own. To keep it simple, I copy the contents of my i:\Users\barry\.
android directory to c:\Users\barry\.android to fix the problem.

Error message: INSTALL_PARSE_FAILED_
INCONSISTENT_CERTIFICATE
This error message indicates that an app you previously installed conflicts
with the app you’re trying to install. So, on the emulator screen, navigate to
the list of installed applications (which is usually an option on the Settings
screen). In the list of applications, delete any apps that you installed
previously.

 Occasionally, you might have trouble finding previously installed apps from
the Settings➪Applications menus in the emulator. If you do, visit this book’s
website (http://allmycode.com/Java4Android) for a geeky workaround
solution.

The app starts, but the emulator displays
the Force Close or Wait dialog box
The formal name of the Force Close or Wait dialog box is Application Not
Responding (ANR). Android displays the ANR dialog box whenever an app
takes too long to do whatever it’s supposed to do. When the app runs on a
real device (a phone or a tablet), the app shouldn’t make Android display the
ANR dialog box.

http://allmycode.com/Java4Android
http://allmycode.com/Java4Android

91 Chapter 4: Creating an Android App

But on a slow emulator, seeing a few Force Close or Wait messages is par for
the course. When I see the ANR dialog box in an emulator, I usually select
Wait. Within about ten seconds, the dialog box disappears and the app
continues to run.

Changes to your app don’t appear in the emulator
Your app runs and you want to make a few improvements. So, with the
emulator still running, you modify the app’s code. But after choosing
Run➪Run As➪Android Application, the app’s behavior in the emulator
remains unchanged.

When this happens, something is clogged up. Close and restart the emulator.
If necessary, use the Wipe User Data trick that I describe in the earlier
section “Error message: The user data image is used by another emulator.”

The emulator’s screen is too big
Sometimes, the development computer’s screen resolution isn’t high enough.
(Maybe your eyesight isn’t what it used to be.) This symptom isn’t a deal
breaker, but if you can’t see the emulator’s lower buttons, you can’t easily
test the app. You can change the development computer’s screen resolution,
though adjusting the emulator window is less invasive.

To change the emulator window size, follow these steps:

 1. Close the emulator.

 2. From the Eclipse main menu, choose Window➪Android Virtual Device
Manager.

 3. In the list of virtual devices, select an AVD that’s appropriate to the
project and click Start.

 4. In the resulting Launch Options dialog box, select the Scale Display to
Real Size check box.

 5. Lower the value in the Screen Size field.

 As you change the Screen Size value, the value in the Scale field changes
automatically. The smaller the Scale value, the smaller the emulator
appears on the development computer’s screen.

 6. Click Launch.

 As a result, Eclipse launches a new copy of the emulator — this time,
with a smaller emulator window.

92 Part I: Getting Started with Java Programming for Android Developers

Testing Apps on a Real Device
You can bypass emulators and test apps on a phone, a tablet, or maybe an
Android-enabled trash compactor. To do so, you have to prepare the device,
prepare the development computer, and then hook the two together. This
section describes the process.

To test an app on a real Android device, follow these steps:

 1. On the Android device, turn on USB debugging.

 Various Android versions have their own ways of enabling (or disabling)
USB debugging. You can poke around for the debugging option on your
own device or visit this site for the procedures on some representative
Android versions:

www.teamandroid.com/2012/06/25/how-to-enable-usb-
debugging-in-android-phones

 On my device, I keep USB debugging on all the time. But if you’re
nervous about security, turn off USB debugging when you aren’t using
the device to develop apps.

 2. In your project’s branch of the Package Explorer, double-click the
AndroidManifest.xml file.

 Eclipse offers several ways to examine and edit this file.

 3. At the bottom of the Eclipse editor, click the Application tab.

 Eclipse displays a form like the one shown in Figure 4-12.

 4. In the Debuggable drop-down list, choose True. (Refer to Figure 4-12.)

 When Debuggable is set to True, Android tools can monitor the run of
the app.

 The ability to debug is the ability to hack. Debugging also slows down an
app. Never distribute an app to the public with Debuggable set to True.

 5. Choose File➪Save to store the new AndroidManifest.xml file.

 6. Set up the development computer to communicate with the device.

	 • On Windows: Visit http://developer.android.com/sdk/
oem-usb.html to download the device’s Windows USB driver.
Install the driver on the development computer.

	 • On a Mac: /* Do nothing. It just works. */

http://www.teamandroid.com/2012/06/25/how-to-enable-usb-debugging-in-android-phones
http://www.teamandroid.com/2012/06/25/how-to-enable-usb-debugging-in-android-phones
http://developer.android.com/sdk/oem-usb.html
http://developer.android.com/sdk/oem-usb.html

93 Chapter 4: Creating an Android App

Figure 4-12:
The

Application
tab of a

project’s
Android
Manfest
.xml file.

 7. Using a USB cable, connect the device to the development computer.

 For ways to verify that the device is connected to the development
computer, visit this book’s website at http://allmycode.com/
Java4Android.

 8. In Eclipse, run the project.

 A connected device trumps a running emulator. So, if the Android
version on the device can handle the project’s minimum SDK version,
choosing Run➪Run As➪Android Application installs the app on the
connected device.

Eventually, you’ll disconnect the device from the development computer.
If you’re a Windows user, you may dread reading Windows can’t stop
your device because a program is still using it. To disconnect
the device safely, do the following:

 1. Open the Command Prompt window.

 On Windows 7 or earlier: Choose Start➪All Programs➪Accessories➪
Command Prompt.

 On Windows 8: First press Windows+Q. Then type Command Prompt
and press Enter.

 2. In the Command Prompt window, navigate to the ANDROID_HOME/
platform-tools directory.

http://allmycode.com/Java4Android
http://allmycode.com/Java4Android

94 Part I: Getting Started with Java Programming for Android Developers

 For example, if the ANDROID_HOME directory is
C:\Users\yourName\adt-bundle-windows-x86_64\sdk

 type this command:
cd C:\Users\yourName\adt-bundle-windows-x86_64\sdk\platform-tools

 3. In the Command Prompt window, type adb kill-server and then press
Enter.

 The adb kill-server command stops communication between the
development computer and any Android devices, real or virtual. In
particular,

	 •	The	development	computer	no	longer	talks	to	the	device	at	the	
end of the USB cable.

	 •	The	development	computer	no	longer	talks	to	any	emulators	it’s	
running.

 After issuing the adb kill-server command, you see the friendly
Safe to Remove Hardware message.

 4. Unplug the Android device from the development computer.

 After unplugging the device, you might want to reestablish communication
between the development computer and any emulators you’re running.
If so, follow Step 5.

 5. In the Command Prompt window, type adb start-server and then press
Enter.

Examining an Android App
In Figure 4-13, the Package Explorer in Eclipse shows the structure of a newly
created Android project. Each branch of the tree represents a file or a folder,
and if you expand all branches of the tree, you see even more files and folders.
Why so many files and folders in an Android project? This section provides
answers.

The src directory
The src directory contains the project’s Java source code. Files in this
directory have names such as MainActivity.java, MyService.java,
DatabaseHelper.java, and MoreStuff.java.

95 Chapter 4: Creating an Android App

Figure 4-13:
The

Package
Explorer
displays

an Android
app.

You can cram hundreds of Java files into a project’s src directory. But when
you create a new project, Android typically creates only one file for you.
Earlier in this chapter, I accepted the default name MainActivity so that
Android creates a file named MainActivity.java. (Refer to Figure 4-4.)

 An Android activity is one “screenful” of components. For more information
about Android activities, see Chapter 5.

Most of the material in this book is about files in the src directory. In this
chapter, I focus on the other directories.

The res directory
A project’s res directory contains resources for use by the Android
application. In Figure 4-13, you see that res has a bunch of subdirectories:
four drawable directories, a layout directory, a menu directory, and three
values directories.

The drawable subdirectories
The drawable directories contain images, shapes, and other elements.

96 Part I: Getting Started with Java Programming for Android Developers

Each drawable directory applies to certain screen resolutions. For example,
in the name drawable-hdpi, the letters hdpi stand for high number of dots
per inch. Files in the drawable-hdpi directory apply to devices whose
resolutions are (roughly) between 180 and 280 dots per inch.

 For more information about Android screen resolutions, visit http://
developer.android.com/guide/practices/screens_support.html.

In Figure 4-13, the drawable-hdpi directory contains one file named ic_
launcher.png. This file describes the image that appears on the app’s icon
on the Android launcher screen.

The values subdirectory
An app’s res/values directory contains a file named strings.xml. (Refer
to Figure 4-13.) Listing 4-1 shows the code in a simple strings.xml file.

Listing 4-1: A Small strings.xml File
<?xml version=”1.0” encoding=”utf-8”?>
<resources>

 <string name=”app_name”>My First Android App</string>
 <string name=”hello_world”>Hello world!</string>
 <string name=”menu_settings”>Settings</string>

</resources>

 The code in Listing 4-1 is XML code. For information about XML code, see the
“All about XML files” sidebar, later in this chapter.

In the strings.xml file, you collect all the words, phrases, and sentences
that the app’s user might see. You lump together phrases such as Hello
world! and My First Android App so that someone can translate them all
into different languages. With all those phrases collected in the strings.
xml file, a translator doesn’t have to poke around to find phrases in the
Java code. (Poking around in the code in any real programming language
can be dangerous because program code is intricate, and it can be brittle.
Believe me: If I were a translator, I’d much rather translate the phrases in a
strings.xml file.)

Listing 4-1 describes a “hello_world” string containing the characters
Hello World! So in the app’s Java code, you refer to the words Hello world!
by typing R.string.hello_world. To refer to the words Hello world!
in another XML file (such as the one in Listing 4-2), you type “@string/
hello_world”. Either way, the text R.string.hello_world or the text “@
string/hello_world” stands for the words Hello world! in Listing 4-1.

http://developer.android.com/guide/practices/screens_support.html
http://developer.android.com/guide/practices/screens_support.html

97 Chapter 4: Creating an Android App

The use of strings.xml files helps with localization, which, in the tech world,
is what you do to adapt an app to a culture’s local language and customs.
To localize the app for French-speaking users, for example, you create an
additional folder named values-fr. You add this folder to the tree shown in
Figure 4-13. Inside the values-fr folder, you create a second strings.xml
file, and the new strings.xml file contains a line such as this one:

<string name=”hello_world”>Bonjour tout le monde!</string>

For Romanian, you create a values-ro directory, containing a strings.
xml file with this line:

<string name=”hello_world”>Salut lume!</string>

When Android sees either R.string.hello_world or “@string/hello_
world” in the code, Android determines the user’s country of origin and
automatically displays the correct translation. This localization happens with
no further effort on your part.

The layout subdirectory
The layout directory contains descriptions of the activities’ screens.

A minimal app’s res/layout directory contains an XML file describing an
activity’s screen. (Refer to the activity_main.xml branch in Figure 4-13.)
Listing 4-2 shows the code in the simple activity_main.xml file.

Listing 4-2: A Small Layout File
<RelativeLayout xmlns:android=
 “http://schemas.android.com/apk/res/android”
 xmlns:tools=”http://schemas.android.com/tools”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 tools:context=”.MainActivity” >

 <TextView
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:layout_centerHorizontal=”true”
 android:layout_centerVertical=”true”
 android:text=”@string/hello_world” />

</RelativeLayout>

The code in Listing 4-2 specifies that the layout of the app’s activity is
a RelativeLayout (whatever that means) and, centered inside the
RelativeLayout, you have a TextView. This TextView thingy is a little
label containing the words Hello world! (Refer to Figure 4-11.)

98 Part I: Getting Started with Java Programming for Android Developers

All about XML files
Every Android app consists of some Java
code, some XML documents, and some other
information. (The acronym XML stands for
eXtensible Markup Language.) You might
already be familiar with HTML documents —
the bread and butter of the World Wide Web.

Listings 4-1 and 4-2 contain XML documents.
Like an HTML document, every XML document
consists of tags (angle-bracketed descriptions
of various pieces of information). But unlike an
HTML document, an XML document doesn’t
necessarily describe a displayable page.

Here are some facts about XML code:

 ✓ A tag consists of text surrounded by angle
brackets .

 For example, the code in Listing 4-2
consists of three tags: The first tag is
the <RelativeLayout ... >
tag, the second tag is the <Text
View ... /> tag, and the third tag is the
</RelativeLayout> tag.

 ✓ An XML document may have three different
kinds of tags: start tags, empty element
tags, and end tags .

 A start tag begins with an open angle
bracket and a name. A start tag’s last
character is a closing angle bracket.

 The first tag in Listing 4-2 (the
<RelativeLayout ... > tag
on lines 1–6) is a start tag. Its name is
RelativeLayout.

 An empty element tag begins with an open
angle bracket followed by a name. An
empty element tag’s last two characters
are a forward slash followed by a closing
angle bracket.

 The second tag in Listing 4-2 (the
<TextView ... /> tag on lines 8–13
in the listing) is an empty element tag. Its
name is TextView.

 An end tag begins with an open angle
bracket followed by a forward slash and
a name. An end tag’s last character is a
closing angle bracket.

 The third tag in Listing 4-2 (the
</RelativeLayout> tag on the last
line of the listing) is an end tag. Its name is
RelativeLayout.

 ✓ An XML element either has both a start tag
and an end tag, or it has an empty element
tag .

 In Listing 4-2, the document’s
RelativeLayout element has both
a start tag and an end tag. (Both the
start and end tags have the same name,
RelativeLayout, so the name of the
entire element is RelativeLayout.)

 In Listing 4-2, the document’s TextView
element has only one tag: an empty element
tag.

 ✓ Elements are either nested inside one
another or have no overlap .

 For example, in the following code, a
TableLayout element contains two
TableRow elements:

<TableLayout xmlns:android=
 “http://schemas.

android.com/apk/res/
android”

 android:layout_
width=”fill_parent”

 android:layout_
height=”fill_parent” >

 <TableRow>

 <TextView
 android:layout_

width=”wrap_content”
 android:layout_

height=”wrap_content”

99 Chapter 4: Creating an Android App

 android:text=”@
string/name” />

 </TableRow>

 <TableRow>

 <TextView
 android:layout_

width=”wrap_content”
 android:layout_

height=”wrap_content”
 android:text=”@

string/address” />

 </TableRow>

</TableLayout>

 The preceding code works because the
first TableRow ends before the second
TableRow begins. But the following XML
code is illegal:

<!-- The following code isn’t
legal XML code. -->

<TableRow>

 <TextView
 android:layout_

width=”wrap_content”
 android:layout_

height=”wrap_content”
 android:text=”@

string/name” />
<TableRow>

</TableRow>

 <TextView
 android:layout_

width=”wrap_content”
 android:layout_

height=”wrap_content”
 android:text=”@

string/address” />
</TableRow>

 With two start tags followed by two end
tags, this new XML code doesn’t pass
muster.

 ✓ Each XML document contains a root
element — one element in which all other
elements are nested .

 In Listing 4-2, the root element is
the RelativeLayout element.
The listing’s only other element (the
TextView element) is nested inside that
RelativeLayout element.

 ✓ Different XML documents use different
element names .

 In every HTML document, the

element stands for line break. But in
XML, the names RelativeLayout
and TextView are particular to Android
layout documents. And the names
portfolio and trade are particular to
financial product XML (FpML) documents.
The names prompt and phoneme are
peculiar to voice XML (VoiceXML). Each
kind of document has its own list of element
names.

 ✓ The text in an XML document is case-
sensitive .

 For example, i f you change
R e l a t i v e L a y o u t t o
relativelayout in Listing 4-2, the app
won’t run.

 ✓ Start tags and empty element tags may
contain attributes .

 An attribute is a name-value pair. Each
attribute has the form name=”value”. The
quotation marks around the value are
required.

 In Listing 4-2, the start tag
(RelativeLayout) has five attributes,
and the empty element tag (TextView)
has five of its own attributes. For example,
in the TextView empty element
tag, the text android:layout_
width=”wrap_content” is the first
attribute. This attribute has the name
android:layout_width and the
value “wrap_content”.

(continued)

100 Part I: Getting Started with Java Programming for Android Developers

The gen directory
The directory name gen stands for generated. The gen directory contains
R.java. Listing 4-3 shows that part of the R.java file generated for you
when you create a brand-new project.

Listing 4-3: Don’t Even Look at This File
/* AUTO-GENERATED FILE. DO NOT MODIFY.
 *
 * This class was automatically generated by the
 * aapt tool from the resource data it found. It
 * should not be modified by hand.
 */

package com.example.myfirstandroidapp;

public final class R {
 public static final class attr {
 }
 public static final class drawable {
 public static final int ic_launcher=0x7f020000;
 }
 public static final class id {
 public static final int menu_settings=0x7f070000;
 }
 public static final class layout {
 public static final int activity_main=0x7f030000;
 }
 public static final class menu {
 public static final int activity_main=0x7f060000;
 }
 public static final class string {
 public static final int app_name=0x7f040000;
 public static final int hello_world=0x7f040001;
 public static final int menu_settings=0x7f040002;
 }
 // ... (There’s more!)

(continued)

 ✓ A non-empty XML element may contain
content .

 For example, in the element <string
name=”hello_world”>Hello

world!</string> in Listing 4-1, the
content Hello world! is sandwiched
between the start tag (<string
name=”hello_world”>) and the end
tag (</string>).

101 Chapter 4: Creating an Android App

The values in R.java are the jumping-off points for the resource management
mechanism in Android. Android uses these numbers for quick and easy
loading of the items you store in the res directory.

You can’t make changes to the R.java file. Long after the creation of a
project, Android continues to monitor (and, if necessary, update) the
contents of the R.java file. If you delete R.java, Android re-creates the file.
If you edit R.java, Android undoes the edit. If you answer Yes in the dialog
box named Do You Really Want to Edit This File?, Eclipse accepts the
change — but immediately afterward, Android clobbers your change.

The Android 4.2 branch
The tree shown in Figure 4-13 has an Android 4.2 branch, but it isn’t a
directory on the computer’s file system. In the Package Explorer view, the
Android 4.2 branch (or Android 3.0 branch or Android whatever
branch) reminds you that the project includes prewritten Android code (the
Android API).

 A .jar file is a compressed archive containing a useful bunch of Java classes.
In fact, a .jar file is a .zip archive. You can open any .jar file by using
WinZip or StuffIt Expander or the operating system’s built-in unzipping utility.
(You may or may not have to change the filename from whatever.jar to
whatever.zip.) Anyway, an android.jar file contains prewritten Android
code (the Android API) for a particular version of Android. In Figure 4-13, a
Package Explorer branch reminds you that your project contains a reference
to another location on the hard drive (to one containing the .jar file for
Android 4.2).

R .java and the legend of the two vaudevillians
According to legend, two friends named
Herkimer and Jake once worked together for
50 years as a comedy team in vaudeville. Year
after year, they practiced and refined their act,
adding a new joke here and removing an old
joke there. As time went on, they adopted a kind
of shorthand to refer to the jokes in their act.
“Let’s move Joke Number 35 to the end of the
first song,” said Herkimer. And Jake responded,
“I’d rather do Joke Number 119 when the song
ends.”

Eventually, both Herkimer and Jake retired to
an old-age home. Day after day, they sat side
by side in the TV room, staring at reruns of
Milton Berle’s show and The Ed Sullivan Show.
Occasionally, something on the screen would
remind Herkimer of one the team’s old jokes.
“Fifty-one,” Herkimer would call out. And upon
hearing this number, Jake would start laughing
hysterically.

(continued)

102 Part I: Getting Started with Java Programming for Android Developers

(continued)

Many elements of the code in an Android app
are numbered. For example, an item on the
screen can be in one of three states: 0, 4, or
8. To help you (the developer) remember what
the numbers mean, the creators of Android
provide synonyms for each number. So rather
than write 0 in your Java code, you can write
View.VISIBLE. An item in this state is in
plain sight on the user’s screen. On the other
hand, an item in state 4 (with the synonym
View.INVISIBLE) occupies space on the
screen but doesn’t light up any pixels. The user
doesn’t see this item, but its spooky presence
might force other items to move one way or
another. Finally, an item in state 8 (with the
synonym View.GONE) has no presence on the
screen. This item might have once appeared
in the center of the screen, and it might later
appear again on the screen. But now, in the
View.GONE state, this item has no influence
on the layout of the screen.

When dealing with state numbers, and
with other code numbers, the creators of
Java use hexadecimal notation. In Java,
numbers starting with 0x are hexadecimal
(base 16) numbers. For example, the number
0x00000004 stands for 4 × 160 — which (in
the conventional base 10 system) is plain old 4.
And the number 0x00000024 stands for 2 ×
161 + 4 × 160 — which (in base 10) is 36. Finally,
the number 0x0000001b stands for 1 × 161
+ 11 × 160 — which (in base 10) is 27. As an
Android developer, I seldom have to convert a
hexadecimal value into its conventional base 10
representation. So don’t worry about doing it.

Anyway, the app you see in Figure 4-11 displays
the text Hello world! When you create an

Android app, you seldom put actual words
such as “Hello World!” in the app’s Java code.
Instead, you refer to the words indirectly. You
give the words Hello World! a number, and
you put that number in the Java code. More
precisely, these things happen:

 ✓ You have the line < s t r i n g
name=”hello_world”>Hello
world!</string> in the strings.
xml file, which is in the values
subdirectory of the project’s res directory.

 ✓ Eclipse generates a code number, such as
0x7f040001. (Refer to Listing 4-3.)

 ✓ Android associates the number
0x7f040001 with the synonym
R.string.hello_world by having
the text hello_world=0x7f040001
in the string portion of the R.java file.
(Refer to Listing 4-3).

 ✓ You have the text R.string.hello_
world in the Java code. Alternatively, you
have the text @string/hello_world
in the activity_main.xml file.

This indirect way to refer to the words
Hello world! might seem to be needlessly
complicated. But the indirectness is exactly
what helps you create apps that appeal to
people all over the world. Look at the discussion
of localization in the earlier section “The res
directory.” By creating a new values-fr
directory, you allow a user’s device to
automatically localize to another language, and
to display Bonjour tout le monde! or Hallo Welt!
or Hej Verden! instead of the Anglocentric Hello
world! phrase.

The android.jar file contains code grouped into Java packages, and each
package contains Java classes. Figures 4-14 and 4-15 show you the tip of
the android.jar iceberg. The android.jar file contains classes specific to
Android and classes that simply help Java do its job. Figure 4-14 shows
some Android-specific packages in android.jar. Figure 4-15 displays some
general-purpose Java packages in the android.jar file.

103 Chapter 4: Creating an Android App

Figure 4-14:
Some pack-

ages and
classes in
android

.jar.

Figure 4-15:
The

android
.jar file

includes
general-
purpose

Java
packages.

The AndroidManifest.xml file
If you followed the instructions earlier in this chapter, you’ve already
tinkered with an AndroidMaifest.xml file. Keep in mind that every
Android app has an AndroidManifest.xml file. The AndroidManifest.
xml file provides information that a device needs in order to run the

104 Part I: Getting Started with Java Programming for Android Developers

app. The AndroidManifest.xml file in Listing 4-4 stores some options
that you choose when you create a brand-new Android project. For
example, the listing contains the package name, the minimum required
SDK (the android:minSdkVersion attribute), and the target SDK (the
android:targetSdkVersion attribute).

Listing 4-4: An AndroidManifest.xml File
<?xml version=”1.0” encoding=”utf-8”?>
<manifest
 xmlns:android=
 “http://schemas.android.com/apk/res/android”
 package=”com.example.myfirstandroidapp”
 android:versionCode=”1”
 android:versionName=”1.0” >

 <uses-sdk
 android:minSdkVersion=”8”
 android:targetSdkVersion=”16” />

 <application
 android:allowBackup=”true”
 android:icon=”@drawable/ic_launcher”
 android:label=”@string/app_name”
 android:theme=”@style/AppTheme” >
 <activity
 android:name=
 “com.example.myfirstandroidapp.MainActivity”
 android:label=”@string/app_name” >
 <intent-filter>
 <action android:name=
 “android.intent.action.MAIN” />

 <category android:name=
 “android.intent.category.LAUNCHER” />
 </intent-filter>
 </activity>
 </application>

</manifest>

For my money, the most important items in an AndroidManifest.xml file
are the activity elements. The code in Listing 4-4 has only one activity
element. But a single Android app can have many activities, and each activity
must have its own activity element in the app’s AndroidManifest.xml
file.

 For the scoop on Android activities, see Chapter 5.

105 Chapter 4: Creating an Android App

 An Android activity is one “screenful” of components. (Refer to Chapter 5
for more about Android activities.) If you add an activity’s Java code to an
Android application, you must also add an activity element to the
application’s AndroidManifest.xml file. If you forget to add an activity
element, you see an ActivityNotFoundException when you try to run the
application. (Believe me. I’ve made this mistake many, many times.)

Within an activity element, an intent-filter element describes the
kinds of duties that this activity can fulfill for apps on the same device.
(Intent filters are complicated, so in this book I don’t dare open that whole
can of worms.) But to give you an idea, the action android.intent.
action.MAIN indicates that this activity’s code can be the starting point
of an app’s execution. And the category android.intent.category.
LAUNCHER indicates that this activity’s icon can appear on the device’s Apps
screen.

106 Part I: Getting Started with Java Programming for Android Developers

	Part I: Getting Started with Java Programming for Android Developers
	Chapter 4: Creating an Android App
	Creating Your First Android App
	Testing Apps on a Real Device
	Examining an Android App

	About the Author

